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1. Introduction 

Summaries of work underway during the second year of Grant NAG8-059 are 

presented in the following sections. Some of the research has progressed 

sufficiently for the preparation of manuscripts and the status of these is 

noted. Other ongoing research is not yet ready for publication. A bibliography 

of all papers and abstracts presented as part of development of the 

variational objective analysis follows the summaries. 

The goal of our research is a variational data assimilation method that 

incorporates as dynamical constraints, the primitive equations for a moist, 

convectively unstable atmosphere and the radiative transfer equation. 

Variables to be adjusted include the three-dimensional vector wind, height, 

temperature, and moisture from rawinsonde data, and cloud-wind vectors, 

moisture, and radiance from satellite data. This presents a formidable 

mathematical problem. In order to facilitate thorough analysis of each of the 

model components, we defined four variational models that divide the problem 

naturally according to increasing complexity. The first variational model 

(MODEL I) contains the two nonlinear horizontal momentum equations, the 

integrated continuity equation, and the hydrostatic equation. 

MODEL I1 contains MODEL I plus the thermodynamic equation for a dry 

adiabatic atmosphere. The introduction of this additional constraint violates 

the requirement that the number of subsidiary conditions (dynamic constraints) 

must be at least one less than the number of dependent variables (Courant, 

1936). Inclusion of the same number of constraints as dependent variables 



overdetermines the problem and a solution is not guaranteed. 

must develop a scheme to circumvent this problem or else the dynamically 

adjusted meteorological variables will not satisfy the closed set of primitive 

equations. 

Therefore, we 

MODEL I11 includes MODEL I1 plus radiance as a dependent variable and the 

radiative transfer equation as a constraint. MODEL IV contains MODEL I11 plus 

an additional moisture variable, a moisture conservation equation and a 

parameterization for moist adiabatic processes. 

In addition, the variational models will be made more responsive to the 

original observations. The direct methods for calculating derivatives require 

that the data be pregridded. As noted by Achtemeier (1975) and Williamson and 

Daley (1983), pregridding removes the dependence of the final analysis upon 

the original observations. This dependence can be reestablished by merging the 

variational models with the successive corrections interpolation method (SCM) 

through a cyclical procedure. Independently interpolated meteorological 

variables are merged variationally. The variational fields then serve as first 

guess fields for the next SCM analysis, and so on. 

The research carried out during the second year thus far of the current 

project has fallen into four areas several of which are ongoing and are 

described in the first interim report (Achtemeier, 1987). The research areas 

are 1) sensitivity studies involving MODEL I, 2 )  evaluation of MODEL 11, 3 )  

reformulation of MODEL I for greater compatibility with MODEL 11, 4) 

development of MODEL I11 (radiative transfer equation), and 5) making the 

model more responsive to the observations. 



Brief summaries of the progress in each research area follow: 

1. Sensitivity Studies. After transferral to the ISWS VAX-75 computer, MODEL 

I was run with a range of precision modulus weights. The purpose of the study 

was to assess the sensitivity of MODEL I to different distributions of weights 

through percentage reductions of the initial unadjustment as functions of 

cycle through the solution sequence and through pattern recognition of the 

resultant fields of adjusted meteorological variables. Preliminary results 

show that there exists values for some precision moduli for which MODEL I does 

not converge to a solution. Therefore, this variational assimilation places 

limits upon observation accuracy. This may impact upon the design of new 

instruments and new observation systems. 

2.  MODEL I1 Evaluation. 

equations, it was found that the RMS differences between the initial 

unadjustment and the variational adjustment did not decrease at all levels for 

the thermodynamic equation. This problem has been traced to the way the 

vertical velocity is calculated in the MODEL I. The development and evaluation 

of MODEL I1 is the subject of the more detailed presentation that follows. 

After 4 cycles through the sequence of variational 

3.  Reformulation of MODEL I. 

compatibility between MODEL I and MODEL 11. The theoretical conditions that 

It is crucial that there be complete 

make the two models compatible are the subjects of the more detailed 

presentation that follows. A new version of MODEL I (MODEL 1.2) is under 

development. 



4 .  MODEL I11 (Radiative Transfer Equation). 

transfer equation as a variational constraint has proceeded in two ways. 

First, the radiative transfer equation is posed as a variational constraint 

and the traditional physical temperature retrieval is treated as an applied 

variational problem. First guess temperature profiles are required for a 

solution along with brightness temperatures from any or all of the four 

microwave channels of the TOVS instrument. Nonlinearities in the radiative 

transfer equation are retained in the variational formulation through a 

The development of the radiative 

cyclical adjustment whereby the adjustment equations are solved repeatedly 

with the nonlinear terms updated with previously adjusted values. Rapid 

convergence to a solution is obtained in several cycles. Second, the 

brightness temperatures become four independent variables and the radiative 

transfer equation becomes a constraint along with the truncated Navier-Stokes 

equations in a diagnostic variational model for a non-divergent, geostrophic, 

hydrostatic, and dry atmosphere. This formulation allows the brightness 

temperatures, normally related to temperature only as a function of height, to 

be related to temperatures and winds in three dimensions. 

5 )  Couplinn Variational Models with Observations. All of the variational 

assimilation models are derived from linear and nonlinear partial differential 

equations. It is therefore necessary that the variables to be adjusted be 

transferred from randomly spaced observing sites to a regular grid in a highly 

accurate way so that the derivatives of the gridded variable be accurate and 

free from interpolation error. A detailed theoretical analysis of the Barnes 

(1964 ,  1973) objective interpolation method has’ led to a modification that 

yields improved higher-order calculations including up to 72 percent reduction 

of undesirable very short wavelengths in the Laplacian of the height field. 
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b) Abstract of new paper 

ABSTRACT: The radiative transfer equation is posed as a variational 
constraint and the traditional physical temperature retrieval is treated as an 
applied variational problem. Results show that first guess temperature 
profiles are required for a solution along with brightness temperatures from 



any or all of the four microwave channels of the TOVS instrument. 
Nonlinearities in the radiative transfer equation are retained in the 
variational formulation through a cyclical adjustment whereby the adjustment 
equations are solved repeatedly with the nonlinear terms updated with 
previously adjusted values. Rapid convergence to a solution is obtained in 
several cycles. 

Then the brightness temperatures become four independent variables and 
the radiative transfer equation becomes a constraint along with the truncated 
Navier-Stokes equations in a diagnostic variational model for a non-divergent, 
geostrophic, hydrostatic, and dry atmosphere. This formulation allows the 
brightness temperatures, normally related to temperature only as a function of 
height, to be related to temperatures and winds in three dimensions. 



MODEL I1 (Version 1 )  

1. Introduction 

The MODEL I1 variational data assimilation model is the second of fbur 

general assimilation models designed to blend weather data measured from 

space-based platforms into the meteorological data mainstream in a way that 

maximizes the information content of the satellite data. Because there are 

many different observation locations and there are many instruments with 

different measurement error characteristics, it is also necessary to require 

that the blending be done to maximize the information content of the data to 

retain a dynamically consistent and reasonably accurate description of the 

state of the atmosphere. This is ideally a variational problem for which the 

data receive relative weights that are inversely proportional to measurement 

error and are adjusted to satisfy a set of dynamical equations that govern 

atmospheric processes. Because of the complexity of this type of variational 

problem, we have divided the problem into four variational models of 

increasing complexity. The first, MODEL I, includes as dynamical constraints 

the two horizontal momentum equations, the hydrostatic equation, and an 

integrated continuity equation. The second, MODEL I1 includes as dynamical 

constraints, the equations of MODEL I plus the thermodynamic equation for a 

dry atmosphere. 

MODEL I1 includes as dynamical constraints the five primitive equations 

that govern atmospheric flow. The reason for delaying the introduction of the 

thermodynamic equation until MODEL I1 is as follows. Courant (1936) showed 



that the number of subsidiary conditions (dynamic constraints) must be at 

least one less than the number of adjustable dependent variables. The five 

primitive equations form a closed set of equations with five dependent 

variables. Inclusion of the same number of constraints as dependent variables 

overdetermines the problem and a solution is not guaranteed. Achtemeier (1975) 

attempted to circumvent this problem through a parameterization of the 

tendency terms of the velocity components and the temperature that required 

the exact solution of the integrated continuity equation. This method, a 

variational adjustment within a variational adjustment, was considered a 

failure after an extensive analysis (Achtemeier, 1979) found unrealistically 

large velocity component tendencies where actual velocity changes over a 12-hr 

period were small. 

The approach taken in the development of MODEL I was to make possible the 

inclusion of the five primitive equations by increasing the number of 

dependent variables. We defined two new dependent variables, the developmental 

components of the horizontal velocity tendencies, which increased the number 

of dependent variables from five to seven. Though this solves the problem of 

the number of subsidiary conditions, the extent of internal coupling among the 

variables and within the equations could not be determined fully until the 

development and evaluation of MODEL 11. 

2. MODEL 11: Thermodynamic Equation as a Dynamic Constraint 

Defluxing and omitting the dissipation term of the thermodynamic equation 

in Anthes and Warner (1978), the thermodynamic equation as it appears as a 

dynamical constraint in MODEL I1 is, 



a T / a t  + m ( u  aT/ax + v a T / a y )  + aT/ao - RTw/Cpp - Q/Cp - 0 (1) 

The omega-term (Term 4 )  of the thermodynamic equation can be transformed into 

the nonlinear sigma coordinate system through the definition, 

(1 6 (P-p*13 + a* (P-Pu) / (P*-Pu)  ( 2 )  

where the superscript, *, and subscript, u, identify, respectively, the 
variables at the reference pressure level and at the top of the model 

where the subscript, s, refers to quantities measured at the surface. We 

differentiate (2 )  with respect to time. If 

a - u*/p*-pu 

then we may define two coefficients such that 

(4) 

(5) 

* for plp . 
The thermodynamic equation in the nonlinear sigma coordinates is, upon 

substitution for the omega-term, 

3Tw/at  + m (u  3Tw/3x + v 3Tw/3y) + 3Tw/3a - RTw/Cp  [q3;+qqws] - Q/Cp = 0 (10) 



Here the subscript, w, refers to the whole temperature, Tw = TR + T where TR 
is a reference temperature for the layer and is always in hydrostatic balance 

and T is the departure from the reference temperature that is subject to 

adjustment within the variational model. Substitution for the whole 

temperature retrieves the thermodynamic equation in the adjustable part of the 

temperature, a w a t  + m (u a w a x  + v a w a y )  + ;r ~ T I ~ U  

a T R / a a  - Q / C ~  = 0 - R / C ~  (TR + T) [q$ + q4wS] + (11) 

We next nondimensionalize the thermodynamic equation. Letting 

L e t  U u U', V = UV', A t  = L/C A t '  Ax = LAX' 

TR 8 TR' = gH/R T R '  , AT (gH/R) (F/Ro) bT' p = p' (12) 

a - C/L a '  WQ - PC/L us' 

and dividing through by (C/L) (gH/R)(F/Ro2), the nondimensionalized 

thermodynamic equation with primes suppressed is, 

Dividing by the additional R, renders (13) into the same order of magnitude as 

the other dynamic equations of MODEL 11. In addition, it can be shown that the 

two t e r n  that include TR combine to form the static stability, q., 

Define au = Ro2/F [ ~ T R ' / ~ u  - q3 R / C p  T R ' ]  

Therefore, the thermodynamic equation reduces to 

Next, the thermodynamic equation is converted to finite differences and 

expressed compatible with the Arakawa D-grid finite difference template 



developed for MODEL I (Achtemeier, et al., 1986). Fig. 1 shows the template 

with the locations of the variables that appear in the thermodynamic equation. 

Note that the local tendency of the temperature has been defined as the 

dependent and adjustable variable, ET. The finite difference version of the 

thermodynamic equation is, 

-xy-xa--y -xy-ya--x . --xya --xy--xy 
R ~ .  [ET + rn u T, + rn v T~ + u (T, - ( R / C p )  q3  T ) ]  

--xy - -XY (16) 
+ 0 ,  0 - Roq4 us R/Cp ( (Ro/F) T R  + T ) - [LRRo2/CgHF] Q / C p  = 0 

where the various overbar averages are defined in Achtemeier, et al., (1986). 

3. MODEL 11: The Variational Equations 

The variational analysis melds satellite data with conventional data at 

the second stage of a two-stage objective analysis. All data are gridded 

independently in the first stage and are combined in the second stage. The 

gridded observations to be modified are meshed with the dynamic constraints 

through Sasalci's (1970) variational formulation which requires the 

minimization of the integrand of an adjustment functional. Now each element of 

the integrand, whether the variable to be adjusted, which appears as a least 

squares term; or the constraint to be satisfied, which enters the formulation 

through a Lagrange multiplier, is entered as a linear combination. Therefore, 

it is not necessary to reproduce the full derivation of MODEL I in combination 

with the thermodynamic equation in order to get MODEL 11. Each element can 

enter the variational formulation separately, the variational terms derived, 

and the results combined later to form the final set of Euler-Lagrange 

equations. It is, therefore, necessary to perform the variational operation 

only upon the therplodynarnic equation and the temperature tendency (the only 



new dependent variable) and add the results to the appropriate adjustment 

equations. 

Let, 

where "8 is the precision modulus weight for the temperature tendency. 

Performing the variations upon each of the dependent variables that appear in 

the thermodynamic equation yields the following terms to be added to the 

respective Euler-Lagrange equations: 

-xy-xa--y -Y ------ xu 
ref u 6u = 6/u [Ro m u T, ] - Ro m X5Tx'Y 

Ya -xy-ya--y -x ------ 
ref v 6v = 6/v [Rom v Ty ] = Ro m X ~ T Y - ~  

(19) 

(20) 

--xya --xy -xy 
ret i 6; = ~ 0 ~ 5  (T,  - (R/Cp) 43 T ) + A5 aU 

(21) 
X - y- y-- a ---xya Y -x -x--a 

a? - - R, (m u A5 Ix - R, (rn v A5 )y - Ro (aAg ) a  

(22)  X Y  ---- ref T ---xy 
- Ro R/Cp [a15 93 + w3A5 941 

Table 1 summarizes the modifications to existing MODEL I variational equations 

necessary to implement MODEL 11. Also included are two new equations, the 

latter being the thermodynamic equation. This brings to 13 the number of 

linear and nonlinear equations to be solved. 

4. MODEL 11: Preliminary Results. 

The purpose of this section is to demonstrate that MODEL I1 performs as 

predicted by theory. In our evaluation of the variational assimilation models, 



we have used three diagnostic criteria which have found use in the 

verification of diagnostic analyses (Krishnamurti, 1968; Achtemeier, 1975; 

Achtemeier, et al., 1988; Otto-Bliesner, et al., 1977). These criteria are 

measures of, first, the extent to which the assimilated fields satisfy the 

dynamical constraints, second, the extent to which the assimilated fields 

depart from the observations, and third, the extent to which the assimilated 

fields are realistic as determined by pattern recognition. The last criterion 

requires that the signs, magnitudes, and patterns of the hypersensitive 

vertical velocity and local tendencies of the horizontal velocity components 

be physically consistent with respect to the larger scale weather systems. 

Since the purpose of this preliminary study is to evaluate MODEL I1 as an 

addition to MODEL I, we will concentrate this report on the first criteria 

which has successfully revealed that MODEL I, as is currently formulated, does 

not suffice when combined into MODEL 11. 

This data assimilation model is derived through the variational method of 

undetermined Lagrange multipliers (Sasaki, 1970). The strong constraint 

formalism requires that the dynamical constraints; the nonlinear horizontal 

momentum equations, the hydrostatic equation, and an integrated form of the 

continuity equation, be satisfied exactly (to within truncation). Therefore, 

it is appropriate that the first evaluation of the variational model determine 

whether indeed the adjusted fields of meteorological variables are solutions 

of these physical equations. 

In solving the Euler-Lagrange equations, we substituted observed or 

previously adjusted variables into the nonlinear terms and other terms that 

are products with the Rossby number or are higher order 



terms and treated these terms as forcing functions. This approach made the 

linearized equations easier to solve but several cycles with the forcing terms 

updated with newly adjusted variables were required for the method to converge 

to a solution. 

In order to determine if the method indeed converges to a solution, it is 

necessary to average adjusted variables over two successive cycles and 

reintroduce them into the dynamic constraints. The residuals are computed as 

remainders of algebraic sums of individual terms of each constraint. The root- 

mean-squares (RMS) of these differences (Glahn and Lowry, 1972) vanish 

(constraint satisfaction) when variables at two successive cycles are 

unchanged. A measure of the magnitude of adjustment required to bring the 

initial gridded meteorological fields into variational balance is the 

difference between the initial RMS values (initial unadjustment) obtained by 

substituting unadjusted variables directly into the dynamic equations and the 

RMS values at each cycle. Upon dividing by the initial RMS values, the 

convergence at each cycle can be expressed as percent reduction of the initial 

unad j us tment . 

The performance of MODEL I1 is assessed through the percentage reductions 

in the RMS differences from the initial unadjustments through the first four 

cycles of the solution sequence. The calculations are done for the eight 

adjustable levels in the model. Table 2 shows the percentages for the two 

nonlinear horizontal momentum equations. These results compare favorably with 

the MODEL I percentage residual reductions. The initial unadjustments are 

approximately halved at each cycle to about 90 percent after four cycles. 



I 

The percentage reductions of the initial unadjustment for the integrated 

continuity and hydrostatic equations are shown in Table 3 .  The RMS differences 

for the integrated continuity equation are reduced by from 96 to 99 percent at 

the second cycle and improve slowly to near 100 percent by the fourth cycle. 

These improvements are, of course, dependent upon the magnitudes of the 

initial unadjustment. We set the initial vertical velocity to zero. Then the 

initial unadjustment is equal to the divergence integrated upward. The MODEL I 

cyclical solution order subjects the adjusted velocity components to a second 

adjustment to satisfy the integrated continuity equation. In this case, the 

averages of the adjusted velocity components are just averages of two 

solutions of the integrated continuity equation. Therefore the unadjustment 

should approach zero by the second cycle. 

The initial unadjustments for the hydrostatic equation at levels 4 

through level 8 are halved at each cycle and the percentage reduction 

increases to near 94 percent by the fourth cycle. Convergence is much slower 

at levels 1 and 2.  There is a 65 percent reduction in the initial unadjustment 

at the second cycle at level 2. There is no change during the third cycle and 

a slight increase in the initial unadjustment is observed at cycle 4. Given 

that the only difference between the adjustments presented here and the 

adjustments presented for MODEL I is the introduction of the fifth constraint, 

we are led to suspect that the differences are the result of deleterious 

impacts by the thermodynamic equation. 

Table 4 gives the percentage reductions of the initial unadjustment for 

the thermodynamic equation. Negative percentages occur where the RMS 

differences exceed the initial unadjustment. Table 4 shows that the initial 



unadjustment was reduced by nearly 90 percent by the fourth cycle at levels 2 

and 9. At the remaining levels, first cycle reductions of from 48 to 63 

percent were followed by increases in the RMS differences that by the fourth 

cycle exceeded the initial unadjustment at levels 6 and 7. 

Further analysis of the behavior of the convergence of MODEL I1 has 

revealed the following: 

1. The breakdown in the assimilation is almost exclusively in temperature. The 

initial unadjustments in the horizontal momentum equations and the continuity 

equation are reduced as was done with MODEL I. Only the first two levels in 

the hydrostatic equation show any response to the temperature unadjustment and 

this is somewhat unexpected given that the most severe departures from 

convergence in the thermodynamic equation occur at higher levels. Therefore, 

the breakdown appears confined to some terms in the thermodynamic equation 

rather than in the variational approach to dynamical data assimilation. 

2 .  The patterns of winds and heights generated by MODEL I1 are unchanged from 

the winds and heights generated by MODEL I. This pattern analysis is further 

revealing that the breakdown in convergence in MODEL I1 is largely confined to 

the thermodynamic equation. 

3 .  The initial unadjustment in the thermodynamic equation was found to be 

approximately an order of magnitude larger than the initial unadjustments for 

the other dynamic constraints and was approximately two orders of magnitude 

larger in the stratosphere. Although this is not the cause for the breakdown 

in convergence, it does show that a gross imbalance existed in the initial 



gridded fields of meteorological variables when those variables were 

substituted into the thermodynamic equation. 

4 .  Analysis of the patterns of the residuals remaining after the fourth pass 

found that they were almost identical to, and mostly caused by, the patterns 

of vertical velocity. 

Our analysis of the large RMS differences in the thermodynamic equation 

remaining after four cycles reveals the following concerning how the initial 

and adjusted vertical velocity adversely impacted upon the analyses. First, 

the initial vertical velocity was calculated kinematically and subjected to 

the variational adjustment by O'Brien (1970). This method can transfer error 

from the lower levels into the upper levels of the troposphere and generate 

large and noisy vertical velocity patterns there. Furthermore, there is no 

consideration given for the change in static stability between the troposphere 

with its relatively large vertical velocities and the stratosphere with its 

relatively small vertical velocities. The kinematic vertical velocities were 

unrealistically large in the stratosphere and, when coupled with the large 

static stability, produced large and uncompensated terms in the thermodynamic 

equation. Therefore, the magnitudes of the initial unadjustments were 

approximately two orders of magnitude larger than were the initial 

unadjustments for the other dynamical constraints. 

Second, further theoretical analysis has revealed that the adjustment for 

the divergent part of the wind is the "weak link" in this variational 

assimilation model. First order terms that contain the divergence adjustment 

cancel out in the cyclical solution formulations. The divergence adjustment 



must then be carried in second order terms and through other variables. Our 

solution for this problem has been to require the adjusted horizontal velocity 

components to satisfy the continuity equation constraint after each cycle, a 

vdriational model within a variational model, then allow for the second order 

terms and the readjusted velocity components to "nudge" the solution toward 

the desired dynamic balance. The result was that the RMS differences grew 

after the first cycle when the vertical velocity was released to converge 

slowly toward another equilibrium. 

5 .  Coupling the Vertical Velocity in MODEL I. 

In this section, we propose solutions for the vertical velocity related 

problems of very large initial unadjustments for the thermodynamic equation 

and the buildup of RMS differences in MODEL 11. 

The solution for the problem of very large initial unadjustments in the 

thermodynamic equation is the implementation of a blended vertical velocity 

algorithm such as the variational method presented by Chance (1986). This 

method, developed as part of this variational assimilation project but not 

included in the version of MODEL I1 evaluated as part of this study, blends 

the divergence of the horizontal wind with the vertical velocity calculated 

from the adiabatic method. The relative weighting given the horizontal and the 

vertical velocity is a function of the stability, relative humidity, and 

satellite observed cloud cover. The divergence of the horizontal wind receives 

the greatest weight when the conditions of low stability, near saturation, or 

dense cloud cover at levels with near saturation prevail. The adiabatic 

vertical velocity receives greatest weight at locations where stability is 



high. Division by large stability reduces the magnitude of the vertical 

velocity in the stratosphere and forces the vertical velocity to near zero at 

the tropopause rather than at the arbitrarily defined top of the model domain. 

Preliminary studies with the blended vertical velocity show that large 

magnitude centers of either sign developed by the kinematic method in the 

upper troposphere and lower stratosphere are reduced or eliminated. Therefore 

the large initial unadjustments that exist because of the use of the kinematic 

vertical velocities will be reduced or eliminated also. 

The solution for the problem of buildup of RMS differences in MODEL I1 is 

to reformulate the MODEL I variational equations so that the solution sequence 

will better couple the vertical velocity with the dynamic adjustment. 

Achtemeier, et al. (1986) and Achtemeier and Ochs (1988) have shown that the 

derivations in MODEL I required to reduce the number of dependent variables 

and equations to a single diagnostic equation in geopotential cancel out the 

zero order divergence adjustment terms. The adjustment of the divergent part 

of the wind is therefore forced into higher-order nonlinear terms which do not 

sufficiently impact upon the final adjustment to bring about compatibility 

with the continuity equation. This compatibility is established through the 

second variational step. 

Our analysis of the performance of MODEL I1 reveals that the second 

variational step must be eliminated and the coupling of the vertical velocity 

with the remainder of the adjusted variables must be part of a single 

variational model. 

from the first step adjustment is a function of the nonlinear terms of the 

It was found that the divergent part of the wind retrieved 



horizontal momentum equations (see Achtemeier, et al., (1986) and Achtemeier 

and Ochs (1988). If F5 reonsents the nonlinear terms of the u-component 

equation and F6 represents the nonlinear terns of the v-component equation, 

then the horizontal momentum equations can be expressed as 

m l  = - v + ag/ax + F5 = 0 (23) 

Forming the divergence from (23) and (24) and integrating through the depth of 

the analysis domain gives 

I(U, + vY) da = - I(F6, - Fsy) do = 0 (25) 

It is apparent that (25) is an integrated form of the vorticity equation. The 

constraint upon the divergent part of the wind, and hence the vertical 

velocity, that must be satisfied in order for all MODEL I dynamic constraints 

to be satisfied without the inclusion of an ancillary variational solution for 

the integrated continuity equation is as follows. A particular solution of the 

vorticity equation must integrate to zero at the top of the model domain and 

the divergent component of the same adjusted wind field must also satisfy the 

integrated continuity equation. 

The above stated condition has been incorporated into the variational 



formalisms for MODEL I and the Euler-Lagrange equations rederived. The results 

show that major modifications of the MODEL I theory are required to implement 

the vorticity equation constraint. The reprogramming of MODEL I is currently 

underway. 
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Table 1. Modifications to variational equations in 
MODEL 1 to obtain MODEL 2. 

Variable 
Referenced Existing Function New Terms to be Added 

U 

V 

a 

- 
T 

(J 

0 

F1 

F2 

Eq 34 P 39 
Final Report 1986 

F8 Eq 47 p 41 
Final Report 1986 

New Equation 

New Equation 

xu -Y --Y 
Ro m A5Tx 

-xy-xa--y -xy-yu--x 
E T = - [ "  u Tx + m  v Ty 

--xya --xy-xy 
+ (Tu - ( R / C p )  q3 T ) + ag/Ro ;I 

-xy 1 I 
- --xy - 94 U3 ( R / c ~ )  (R,/F TR + T 



Table 2. Percent reduction of the initial unadjustment 
in the horizontal momentum equations after 4 cycles. 

Cycle Level 
NO. 2 3  4 5 6 7 8 9  

0 0 0  
1 54 54 
2 a i  78 
3 92 a9 
4 94 93 

0 0 0  
1 54 53 
2 78 80 
3 88 89 
4 93 92 

u-component 

0 0 0  
52 51 50 
77 75 74 
a7  a6 a6 
90 a9 91 

v-component 

0 0 0  
52 53 51 
77 a0 77 
a7 90 a8 
91 92 91 

0 0 0  
50 51 51 
75 76 76 

91 90 90 
a7 a7  a7  

0 0 0  
51 50 50 
76 76 73 

91 91 a8 
a8 a 7  a4 

Table 3. Percent reduction of the initial unadjustment 
in the integrated continuity and hydrostatic equations 
after 4 cycles. 

Cycle Level 
No. 2 3 4 5 6 7 8 9  

0 

97 
96 
96 

- 

0 
51 
73 

86 
a3 

Integrated Continuity 

0 0 0 0 0  

98 98 99 99 99 
98 98 99 99 99 

- - - - - 

9a 99 99 99 99 

Hydrostatic 

0 0 0 0 0  
50 50 50 50 50 
65 75 75  75 75 

62 94 94 94 94 
65 a8 a8 aa a8 

0 0  

99 99 
99 99 
99 99 

- - 

0 0  
50 50 
75 75 

94 94 
a8 aa 



Table 4 .  Percent reduction of the initial unadjustment 
in the thermodynamic equation after 4 cycles. 

Cycle Level 
No. 2 3 4 5 6 7 8 9  

Thermodynamic Equation 

0 0 0 0 0 0 0 0 0  
1 54 60 62  63  61 63 63 48 
2 81  80 74  55 24 39 76 72 
3 89 73 6 1  32 -12 9 62 83 
4 88 65 50 14  -38 -12 49 89 



T T 

Q V 

T T 

Fig. 1. The grid template for the variational assimilation model. 


